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A B S T R A C T

Air pollution poses a significant threat to public health and well-being. In recent decades, researchers have used 
direct measurements and predictive modelling to assess urban air quality. However, the impact of vegetation and 
urban form on air quality remains uncertain, particularly regarding their interconnected roles. This paper sys
tematically reviews studies on real urban environments, focusing on how vegetation and urban form influence air 
quality assessment and prediction. It highlights key variables and their importance, as reported in the literature, 
and identifies areas needing further research to improve predictions of vegetation’s effects on urban air quality in 
relation to urban morphology.

1. Introduction

1.1. Background and importance

Air pollution has long been a by-product of energy extraction from 
carbon-based combustion, driving production and consumption at scales 
that significantly threaten human and ecological health (Perera, 2018, 
Myers et al., 2013, Tong et al., 2022). As social-economic developments 
evolve, the sources and interactions of air pollutants have become more 
diverse and complex. For instance, the primary air pollutants commonly 
observed in Europe include particulate matter (PM), black carbon (BC), 
sulphur oxides (SOx), nitrogen oxides (NOx), ammonia (NH3), carbon 
monoxide (CO), methane (CH4), non-methane volatile organic com
pounds and certain metals and poly-cyclic aromatic hydrocarbons 
(EEA). The main known sources of air pollution are associated with 
human activities, including industrial emissions (Azarov et al., 2017), 
traffic emissions (Bai et al., 2022), agricultural fires (Khanal et al., 
2022), and household emissions (Apte and Salvi, 2016). Natural pro
cesses, such as volcanic eruptions, dust storms, atmospheric inversions, 
can also cause or exacerbate air pollution (Burhan and Mukminin, 
2020).

According to the “State of Global Air 2020” report (Hei, 2020), air 
pollution ranks as one of the leading causes of premature death and is 

closely linked to a variety of diseases. Exposure to air pollution has been 
strongly associated with specific health outcomes, including stroke, 
ischemic heart disease, chronic obstructive pulmonary disease, lung 
cancer, and pneumonia. Air quality has been a focus of global attention, 
and a number of air quality control standards, guidelines, laws, policies 
and agreements have been signed, such as the WHO Global Air Quality 
Guidelines (WHO, 2021), the Clean Air Programme for Europe (Amann 
et al., 2005), and the UK Clean Air Act (Act, 1970).

The relationship between urban form and air quality began to attract 
researchers’ attention as early as the 1970s (Tolley and Cohen, 1976, 
Capannelli et al., 1977), including studies on urban vegetation (Nadel 
et al., 1977, Smith and Staskawicz, 1977). However, the relationships 
between vegetation and built urban form (i.e., urban morphological 
characteristics) affecting air quality are far from conclusive. In some 
studies, vegetation was considered a component of urban form, influ
encing aspects of vertical structures of an urban environment. On the 
other hand, vegetation was distinguished from urban form due to 
functional differences (e.g., natural vs. man-made and ecosystem ser
vices vs. structural functions) and the use of different metrics of mea
surement and analysis (e.g., biomass vs. construction density). 
Consequently, the impact of vegetation on air quality is often assessed 
under the influences of built urban form, intentionally or otherwise, 
making it challenging to isolate and quantify the effects of vegetation. 
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Better understanding of the effects on air quality due to vegetation in 
real urban environments is required to inform urban greening planning 
and design decision-making.

1.2. Objectives and scope

This research aligns with the United Nations Sustainable Develop
ment Goals. Specifically, it supports Indicator 11.6.2 under Target 11.6, 
which specifies the annual mean levels of fine particulate matter (e.g. 
PM2.5 and PM10) in cities (population weighted) (Division, 2023). By 
addressing critical gaps in understanding the relationships between 
vegetation and air quality in real urban environments, this review 
contributes to actionable insights that can guide urban planning and 
policy development to achieve this target. We focus on the studies of 
urban air quality that examine the effects of vegetation in relation to 
(built) urban form characteristics. In Section 2, we first summarise the 
questions and findings from the previous review articles published 
during 2015–2023, to identify the areas for a new systematic review. In 
Section 3, we explain how the PRISMA (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses) principles and protocol were 
applied to identify a set of 79 papers meeting the inclusion and exclusion 
criteria. Section 4 comprises five subsections that provide detailed an
alyses of the study methods and results under review: each corre
sponding to specific review questions. In Section 5, we discuss the key 
findings and implications of this systemic review in terms of the research 
transitions observed and the limitations of our review. We then conclude 
in Section 6 the significance of this review and the key pointers to 
further research.

2. Summary of previous reviews published in 2015–2023

We identified 23 review articles published during 2015–2023 that 
focused on vegetation, urban form and air quality. To inform our sys
tematic review, we grouped and summarised these 23 review papers 
into four tables according to the keywords used by the authors 
(Appendix Tables A1a – A1d). The first set of eight reviews (listed in 
Appendix Table 1a) focused on vegetation’s capacity to mitigate and 
remove air pollutants. The main questions discussed were the mitigation 
capacities of different vegetation strategies, such as green walls, green 
roofs, and green spaces/parks. Particulate matter (PM) was most dis
cussed, along with O3, NO2, and poly-cyclic aromatic hydrocarbons 
(PAHs). These reviews also compared air cleaning effects according to 
vegetation species and traits.

The second set of six reviews in Appendix Table A1b shows a com
mon interest in the processes and effects of vegetation on air pollution 
removal through deposition and dispersion. The deposition effect is 
considered an air pollutant capture mechanism via plant surfaces, while 
the dispersion effect involves transporting air pollutants through air 
flows, changing pollutants concentrations at different locations within 
the urban environment. This group of reviews discusses the deposition 
and aerodynamic dispersion models of green infrastructure at different 
scales, which include various research methods – on-site studies, wind 
tunnel research, and numerical simulations. Key parameters were dis
cussed among different processes and models.

Appendix Table A1c contains seven reviews concerning the effects of 
vegetation in urban street canyons or open streets with or without 
buildings or other structures on both sides. Here, traffic emissions were 
the main source of air pollutants; trees and hedges planted in these 
urban spaces could function as porous obstacles. Other green infra
structure, such as green walls and green roofs, were of interest. 
Considering the combined effects of the built forms, emission patterns, 
there were noticeable characteristics in the concentration of air pollut
ants in urban streets (enclosed or open). Vegetation porosity was sug
gested as a parameter influencing whether barriers or obstacles reduce 
or increase air pollution concentrations in urban street spaces.

Finally, there are two review papers (Appendix Table A1d) 

summarising the studies that investigated the influence of vegetation not 
only on air pollution but also on other aspects of urban ecological sys
tems, including runoff pollution removal and interactions with the in
tensity of urban heat and pollution islands. The reviews highlighted the 
increasingly multidisciplinary approaches to assessing urban vegetation 
as an ecosystem service.

In summary, the previous reviews have identified five focal areas of 
urban air quality research: (1) mitigation processes (deposition, 
dispersion); (2) models and parameters (numerical simulation, wind 
tunnel); (3) macro- and micro-structure of vegetation (e.g., leaf traits, 
porosity); (4) effects of plants in different urban forms and scales (street 
canyon, open road); and (5) ecological roles of plants in urban envi
ronments. However, these reviews also show some limitations. First, 
only five reviews were conducted following the PRISMA protocols 
(Diener and Mudu, 2021, Corada et al., 2021, Buccolieri et al., 2022, 
Chaudhuri and Kumar, 2022, Ernst et al., 2022). Second, the reviews 
reporting the effects of vegetation did not provide hierarchical corre
lation or regression accounts of the vegetation’s effects on mitigating 
concentrations of air pollutants. Third, it is difficult to draw clear im
plications from reviews that mixed theoretical studies with studies of 
real urban environments. These limitations highlight key research gaps 
in previous reviews, including the limited focus on real urban environ
ments and the lack of exploration into the hierarchical relationships 
between vegetation and air pollutants. To address these gaps, we have 
identified the following questions that necessitate a new systematic 
review: 

1. What urban air quality indicators and data sources were used in the 
studies examining the effects of vegetation on urban air quality?

2. What metrics or indices were used to quantify the morphological 
characteristics of urban vegetation in studies on air quality?

3. What metrics or indices were used to quantify urban forms of real 
cities for air quality studies?

4. What data sources and methods were used for developing predictive 
models for assessing urban air quality of real urban environments?

3. Method and materials

Our systematic review follows the PRISMA framework, which pro
vides a structured and transparent approach to reviewing the literature. 
This methodology addresses inconsistencies in prior reviews by ensuring 
that all included studies are systematically identified, screened, and 
evaluated based on predefined eligibility criteria. By focusing on 
quantitative studies conducted in real urban environments, we aim to 
overcome the lack of real-world validation highlighted in previous re
views. Additionally, the use of standardised metrics and comprehensive 
data extraction protocols ensures consistency across the studies ana
lysed, facilitating more robust comparisons and actionable insights for 
urban planning and policy development.

We first explain how the PRISMA guidelines (Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses) were applied in this 
systematic review (Section 3.1). We then introduce the core materials 
that appeared in the articles identified by the search and selection 
criteria (Section 3.2).

3.1. Method: the PRISMA guidelines applied

The PRISMA guidelines were applied in three stages: (1) identifica
tion, (2) two-step selection – initial selection by abstract and title search, 
followed by selection via full-text search, and (3) grouping the identified 
articles into two main categories: Correlation/Regression Studies, and 
Prediction Models.

The following keywords were used in the initial search: ‘air quality’ 
OR ‘air pollution’ OR ‘air pollutant’ OR ‘air pollutants’, AND ‘vegeta
tion’ OR ‘green infrastructure’ OR ‘plant’, AND ‘urban’ OR ‘outdoor’. 
Publication dates were limited to 2012–2023. Scopus was selected as the 
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database. The search focused on journal articles, including other rele
vant literature such as book chapters and conference papers. The initial 
search returned 3456 papers.

The first selection was conducted based on the search for abstracts, 
followed by a more detailed full-text reading and extraction. The criteria 
for the first selection were as follows:

Inclusion criteria: 

1. Search for papers published only in English.
2. Include research articles published as open access full texts.
3. Include research articles focused on outdoor air quality and vegeta

tion within urban areas.
4. Include research where air quality is the dependent variable and 

vegetation-related metrics or indices are part of the independent/ 
explanatory variables.

5. Include studies that screen vegetation and air quality as interaction 
objects. For studies with additional objects, only review sections that 
address the influence of vegetation on air quality (e.g., interactions 
between vegetation, air pollution, and urban heat islands).

6. Focus on research examining the morphological characteristics of 
vegetation.

7. Include studies on air quality in real urban environments based on 
data-driven quantitative analyses or modeling.

Exclusion criteria: 

1. Exclude studies on indoor air quality and indoor vegetation.
2. Exclude studies on vegetation in large non-urban environments (e.g., 

ecological forests, peri-urban farmlands).
3. Exclude studies related to plant adaptation or tolerance to air 

pollution; non-airborne pollutants (e.g., those in the rain); and 
vegetation effects such as ecological, economic, or social influences 
(e.g., effects on the thermal environment, economic benefits of 
greening, resident satisfaction with urban green spaces).

4. Exclude studies on the biological structures of plants (e.g., leaf traits 
such as wax or chlorophyll).

5. Exclude qualitative studies (e.g., guidelines, policy interpretations), 
numerical simulations (e.g., wind tunnels, CFD), laboratory based 
measurements (e.g., leaf deposition measurements), and studies of 

vegetation removal capacity based on biochemical processes (e.g., 
stomatal uptake).

6. Exclude articles primarily focused on population exposure, human 
health, and diseases.

7. Exclude all 23 previous review papers discussed in Section 2.

Our inclusion and exclusion criteria were intentionally designed to 
concentrate on specific research topics. To emphasize researches with 
real urban environments, we excluded numerical simulation studies. 
Furthermore, we did not categorise individual vegetation types—such as 
trees, hedges, green roofs, or green walls—because our primary objec
tive was to summarise the vegetation indices employed in these studies. 
We assume that these indices are generally applicable to various types of 
vegetation.

Based on the above search and selection criteria, 301 papers were 
identified in the first round of the abstract search, of which 79 papers 
were retained after a more detailed extraction from the open access full 
texts. Fig. 1 shows the PRISMA process flowchart.

3.2. Materials: air quality, vegetation, urban morphology indicators/ 
indices, and prediction models

Our initial summerisation of the core materials used in the 79 orig
inal research articles suggests five headings: (1) air quality indicators, 
(2) vegetation-related indices, (3) non-vegetation-related urban 
morphology indicators, (4) interrelations between vegetation and non- 
vegetation indices, and (5) predictive urban air quality models, as 
introduced below.

3.2.1. Air quality indicators
We identify nine groups of air quality indicators used in the reported 

urban air quality studies: particulate matter (PM), total suspended 
particulates (TSP), ultrafine particles (UFPs), nitrogen oxides (NOx), 
ozone (O3), carbon oxides (COx), sulphur dioxide (SO2), black carbon 
(BC), and aerosol optical depth (AOD).

Particulate matter (PM) is a non-gaseous substance in the air 
composed of chemical compounds and materials. This review focuses on 
PM10, PM2.5, and PM1, referring to particles smaller than 10, 2.5, and 1 
micrometer in diameter, respectively.

Total suspended particulates (TSP) are airborne particulate matter 

Fig. 1. Systematic literature review searching and retrieving flowchart (PRISMA).
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(PM) with diameters of up to approximately 100 micrometers. These 
particulates originate from a variety of sources, encompassing both 
combustion and non-combustion activities. PM10, PM2.5, PM1 are all 
components of TSP.

Ultrafine particles (UFPs) are particles characterized by an aero
dynamic diameter of 0.1 µm (100 nm) or smaller. Due to their small size, 
UFPs can efficiently traverse the respiratory tract, reach and breach the 
alveolar-capillary barrier in the alveoli. Consequently, they can 
disseminate throughout the body via the circulatory system, posing a 
potential threat to human health (Kwon et al., 2020).

Nitrogen oxides (NOx) are gases produced from natural sources, 
motor vehicles and other fuel-burning processes. They are primarily 
composed of nitric oxide (NO) and nitrogen dioxide (NO2).

Ozone (O3) is present throughout the atmosphere. Stratospheric 
ozone, found in the upper atmosphere, forms a protective layer that 
shields life from the sun’s harmful ultraviolet rays. However, ozone at 
ground level can be a harmful air pollutant and is the main ingredient in 
“smog.” Ground-level ozone (O3) does not originate directly from 
anthropogenic sources; rather, it is a secondary pollutant formed 
through a complex series of chemical reactions in the presence of 
sunlight.

Carbon oxides (COx). Carbon monoxide (CO) is a colourless, 
odourless gas released when something is burned. The primary con
tributors of CO to the atmosphere are automobiles, trucks, and other 
vehicles or machinery powered by the combustion of fossil fuels. Carbon 
dioxide (CO2), another gas released from burning fossil fuels, is also 
colourless and non-flammable. While CO2 is not typically considered an 
air pollutant, it is a significant heat-trapping (greenhouse) gas.

Sulphur dioxide (SO2) is a corrosive, acidic gas. Approximately 
99 % of atmospheric SO2 comes from anthropogenic sources, primarily 
the combustion of fossil fuels such as coal, oil, and natural gas. SO2 is a 
major air pollutant that is harmful to human lungs and can lead to 
serious respiratory diseases.

Black carbon (BC) is a component of PM2.5, formed by the incom
plete combustion of fossil fuels. BC can cause poor health and premature 
deaths, and it also warms the atmosphere by effectively absorbing 
sunlight.

Aerosol optical depth (AOD) is a dimensionless measurement that 
indicates how much sunlight is blocked due to the presence of fine solid 
particles or liquid droplets suspended in the air. As a measurement of the 
attenuation effects caused by atmospheric aerosols, AOD is increasingly 
used to evaluate the extent of ambient air pollution over large areas (Li 
et al., 2021a). AOD measurements can be obtained through satellite 
observations (Gupta et al., 2022), ground-based instruments 
(NOAA/ESRL, n.d.), or simulation and modelling (Boulisset et al., 2023).

3.2.2. Vegetation-related indices
Various vegetation-related indices have been defined at macro, 

meso, and micro scales. Based on remote sensing or aerial imaging data, 
macro indices (e.g., vegetation land use, landscape metrics) address 
large green spaces or landscape structures in cities. Meso indices (e.g., 
vegetation structures, green view index) focus on plant communities 
within city neighbourhoods or districts, where street-view images can be 
systematically captured and analysed. Micro indices, such as the leaf 
area index, deal with individual plant or vegetation characteristics.

3.2.3. Non-vegetation-related urban morphology indices
Non-vegetation-related factors and indices identified in this review 

include meteorological data (e.g., temperature, wind speed), urban form 
and structure (e.g., road length), land cover and surface (e.g., water 
bodies, industrial land cover), and socioeconomic factors (e.g., popula
tion density).

3.2.4. Interrelations of air quality indicators, vegetation and non-vegetation 
indices

We developed a novel data visualization scheme to highlight the 

interrelations of the air quality indicators, vegetation, and urban 
morphology indices (see Fig. 4). The frequency of studies on different air 
pollutants and their associated variables was also calculated (see Sec
tion 4.4).

3.2.5. Predictive modelling of urban air quality
Air quality prediction is an emerging and rapidly evolving research 

area, aiming to improve air quality prediction models. Combining 
multiple data sources, machine learning and artificial intelligence 
techniques are increasingly applied to enhance forecasting capabilities 
involving a large number of auxiliary variables.

In this review, 19 articles on air quality prediction were identified 
and summarised, including the modelling methods, the types of auxil
iary variables used, and feature importance analysis.

4. Results

4.1. Air quality indicators and data sources

Based on the 79 papers reviewed, we identified three main sources of 
air quality data used in the studies: ground-level observations, satellite 
measurements, and online open datasets.

4.1.1. Ground-level observations
Ground-level observations are the most direct way to obtain data on 

air quality and various types of air pollution at the population level. The 
two most commonly used methods are ground-based station observa
tions and on-site mobile measurements. The former typically involves an 
air quality monitoring network composed of fixed monitoring stations 
established or managed by government departments or specialised 
agencies. Generally, it features high temporal resolution but low spatial 
resolution, meaning the data often has temporal continuity but is 
geographically limited by the location and number of stations. In 
contrast, the latter method is more flexible, allowing researchers to use 
mobile tools to collect data with greater freedom in choosing sample 
locations. However, both are costly, requiring significant time, energy, 
equipment, and financial resources.

Among the 79 papers, 58 utilised ground-level observation data. Of 
these, 35 relied on ground-based station datasets, 22 employed on-site 
mobile measurement datasets, and one paper combined both methods. 
Appendix Table A2 summarises the sources of ground-level observation 
data.

4.1.2. Satellite measurements
Satellite measurement datasets are widely used as air quality data 

sources, employing remote sensing technologies to retrieve information 
via satellite imagery. This method is popular for obtaining global air 
quality grids due to its accessibility and availability, overcoming the 
location limitations of ground-based measurements and the time- and 
energy-intensive nature of mobile measurements. Commonly used sat
ellite sensing instruments include Moderate Resolution Imaging Spec
troradiometer (MODIS), Ozone Monitoring Instrument (OMI), Thermal 
Infrared Sensor (TIRS), and Visible Infrared Imaging Radiometer Suite 
(VIIRS). However, these datasets cannot directly distinguish concen
trations of different components; instead, they retrieve target pollutant 
data based on the satellite’s observation of aerosol optical depth (AOD). 
Additionally, tropospheric NO2 can be measured through satellite im
ages. Due to the limitations of satellite orbits, the resolution of these 
datasets is typically constrained. Appendix Table A3 summarises the 
satellite measurement datasets and their spatial resolutions.

4.1.3. Online open datasets
The retrieval process is essential for satellite measurement data to 

obtain target air pollution concentrations and achieve higher resolution. 
This typically involves using other data sources, such as ground-based 
observations, for calibration. By combining large amounts of data 
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from multiple sources and undergoing rigorous screening, cleansing, 
computation, and validation processes, this method produces high- 
resolution predictions for specific areas. As a result, substantial data 
and computing resources are required. Consequently, some of these 
retrieved and validated target air pollution datasets are published on
line. These datasets are generally considered highly accurate and are 
widely used due to their high resolution and accessibility. 
Appendix Table A4 summarises the online public datasets used in the 
reviewed research articles.

For the air pollution data collected, pre-processing is essential due to 
issues like missing data and resolution inconsistencies. Appendix Table 
A5 summarises the data pre-processing methods used in the literature. 
Data interpolation methods, such as Inverse Distance Weighted (IDW) 
and Kriging, are commonly used to predict data distribution over larger 
areas based on a limited set of known data. Some research also uses 
linear regression to predict and fill in missing data. Additionally, 
resampling is often employed to achieve uniform dataset resolution. 
Ensuring data integrity is crucial for the smooth progression of subse
quent studies.

4.2. Vegetation-related metrics and indices

Among these 79 papers, vegetation-related metrics and indices can 
be summarised into three categories: (1) Individual characteristics, (2) 
Satellite or street view sensing measurements, and (3) Landscape pattern 
metrics/indices. The vegetation type cluster primarily describes char
acteristics of macroscopic plant communities, including vertical and 
horizontal vegetation structures. Individual characteristics focus mainly 
on mesoscopic plant morphology traits, such as canopy and porosity. 
With advances in remote sensing technology and increased accessibility 
to open-source data, satellite and street view images have become 
convenient tools for quantifying vegetation characteristics in three di
mensions. Landscape metrics include indices describing vegetation 
patch types and arrangements, widely used in landscape research. 
Additionally, morphological spatial pattern analysis (MSPA) is used to 
describe geometry and connectivity through geometric concepts, though 
it is not widely utilised in this research area. Table 1 presents selected 
vegetation-related metrics/indices in terms of definition, calculation, 
and unit of measurement.

Fig. 2 shows the number of articles that used various types of 
vegetation-related indices. Apart from the three main categories and 
MSPA, there is another set of metrics used in the studies, including 
vegetation structure (VS), and Land Use/Land Cover (LULC). NDVI is the 
most frequently used index, appearing in 36 papers, followed by various 
types of vegetation land types used in 27 papers. Landscape pattern 
indices constitute a broad category that includes several indices. 
Although different landscape pattern indices are sometimes combined in 
a single study, the total number of articles using them is relatively low. 
Overall, the application rate of indices in the macro-horizontal dimen
sion is much higher than the usage rate of multi-dimensional indicators 
in the vertical dimension. For each of the vegetation-related indices/ 
metrics used in the studies, a list of the literature reviewed is presented 
in Appendix Table A6.

4.3. Summary and classification of non-vegetation related indices

The non-vegetation related indicators or indices used in the litera
ture can be classified into four clusters: (1) meteorological data, (2) 
urban form and structure, (3) non-vegetation land cover and surface, 
and (4) economic and social data. Fig. 3 shows the number of articles 
reviewed in terms of the non-vegetation-related indices used.

The meteorological data cluster contains 16 variables, with wind 
speed, temperature, and humidity being the top three used. The urban 
form and structure cluster includes 26 indicators or indices, consisting of 
the natural topographical characteristics of urban areas, such as eleva
tion and slope, as well as the structural characteristics of the urban 

Table 1 
Summary of Vegetation-related metrics and indices.

[1] Individual Characteristics

Term Definition Calculator Unit 
[Value 
range]

Count Vegetation/Trees 
Count: The total 
count of trees in 
certain areas.

PVA =
Vegetation Area

Ground Area
Scalar 
[0, ∞]

LAI Leaf Area Index: A 
dimensionless 
quantity 
characterizing plant 
canopies.

LAI =
Leaf Area

Ground Area
Scalar 
[0,10]

CC/CD Canopy Cover or 
Density: a ratio 
between the area 
covered by tree 
crowns and a total 
area within an area.

Canopy Cover =

Tree Crowns Covered Area
Ground Area

Scalar 
[0, ∞]

DBH Diameter at Breast 
Height: The tree 
diameter measured 
at 4.5 feet above the 
ground.

Direct measurement Meter 
(m)

PS Proportion of 
Species: Proportion 
of specific species in 
a green space.

PS =
The number of species

The total number of vegetation
Scalar 
[0,1]

SR Species Richness: 
The number of 
species in given 
samples.

SR =
The total number of species

Area
Scalar 
[0, ∞]

Porosity Tree Crowns/Belts 
Porosity: Ratio of 
area light 
penetrating trees in 
a planar or sectional 
area (ha).

Digital image processing Scalar 
[0,1]

[2] Satellite sensing and street view scanning measurement
Term Definition Calculator Unit 

[Value 
range]

NDVI Normalized 
Difference 
Vegetation Index: 
An index quantifies 
the vegetation by 
measuring the ratio 
of near-infrared 
(NIR) and visible 
red light (Red).

NDVI =
(NIR − Red)
(NIR + Red)

Scalar 
[− 1, 1]

SAVI Soil Adjusted 
Vegetation Index: 
An index to correct 
NDVI for the 
influence of soil 
brightness in areas 
where vegetative 
cover (L [0,1]) is 
low.

SAVI =
(NIR − Red)

(NIR + Red + L)
*(1 + L)

Scalar 
[− 1, 1]

EVI Enhanced 
Vegetation Index: 
An index to correct 
NDVI for 
atmospheric 
resistance (C), 
canopy background 
(L), and values from 
Blue band in areas 
with dense 
vegetation.

EVI =

G*
(NIR − Red)

(NIR + C1*Red − C2*Blue + L)

Scalar 
[− 1, 1]

GTCT Greenness Tasseled 
Cap 
Transformation: An 
index to convert 

GIS-based digital image processing % 
[0,100]

(continued on next page)
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environment, such as road length and road density. Among these, elevation 
and DEM were the most used variables. The non-vegetation land cover 
and surface cluster comprises variables that describe different land use 
types in 1- or 2-dimensional spaces. The economic and social data 
cluster covers population related, economic, traffic, social, and indus
trial activities.

4.4. Interrelations of vegetation, air quality indicators, and non- 
vegetation indices

The air quality indicators and associated variables of interest across 
the 79 papers were analysed. Among these variables, only data from 
more than two articles on the same air pollutant were retained. Fig. 4
shows the interrelations between air quality indicators, vegetation- 
related indices, and non-vegetation related indices, with the air qual
ity indicators forming the central spine. The mapping shows that PM2.5 
is the pollutant of highest concern linked to most variables, followed by 
PM10 and NO2. Among the vegetation related variables, those from 
satellite or street view imagery measurements and vegetation land type 
clusters were linked to more air quality indicators, while the landscape 
metrics cluster had a lower utilization rate. In contrast, the non- 
vegetation related variables/indices, as grouped in four sectors, were 
more evenly connected to air pollutants, with a slightly higher 
connection in the meteorological data.

4.5. Predictive modelling of urban air quality

Recently, identifying and evaluating variables for air quality pre
diction has become a focus of research. Of the 79 reviewed papers, 19 
addressed urban air quality predictions. These studies outline a three- 
step process: (1) auxiliary variable selection, (2) predictive model 
development and validation, and (3) feature importance analysis. Step 
one involves data pre-processing, such as handling missing values and 
standardising dataset resolutions (see Appendix Table A5). Step two, the 
core stage, encompasses algorithm selection, parameter/hyper
parameter tuning, model training/testing, and validation (details in 
Appendix Table A7). While the first two steps are essential, feature 
importance analysis is not always included. We identified at four types 
of prediction models and summarised their feature importance analyses.

4.5.1. Prediction methods and models
Predictive urban air quality models can be categorised into four 

types: (1) spatial estimation models, (2) traditional land use regression 
(LUR) models, (3) machine learning (ML) and deep learning (DL) 

Table 1 (continued )

[1] Individual Characteristics

Term Definition Calculator Unit 
[Value 
range]

satellite data into 
three spectral 
indicators with the 
Greenness indicator 
for vegetation 
growth cycles in 
particular.

GVI Green View Index: 
An objective 
measurement of 
urban green at the 
street level from a 
human-eye 
viewpoint.

GVI =
GreenPixelCount
TotalPixelCount

% 
[0,100]

VGVI Viewshed 
Greenness Visibility 
Index: In a GIS 
framework, VGVIj is 
the index value for 
the observer cell j; 
Gj is the visible 
green cell, Vi is the 
visible non-green 
cell, and di is 
distance decay 
weight 
corresponding to 
visible cell i.

VGVIj =

∑n
1Gi*di( ∑n

1Gi*di
)
+
( ∑n

1Vi*di
)

Where 0 = no green cells are 
visible, and 1 = all of the visible 
cells are green

Scalar 
[0,1]

[3] Landscape pattern metrics and indices
Term Definition Calculator Unit 

[Value 
range]

PLAND Percentage of 
Landscape: 
Percentage of the 
total area of jth 

patch of patch type i 
(aij) over the total 
area of the 
landscape (A).

PLAND =

∑n
j=1 aij

A
*100

% 
[0,100]

PD Patch Density: 
Density of a certain 
patch in the 
landscape.

PD =
NP
A

Patches/ 
km² 
[0, ∞]

MPS Mean Patch Size is 
the area of all 
patches of patch 
type i (aij) divided 
by the number of 
the patch of type i 
(ni), divided by 
10,000 (to convert 
to hectare).

MPS =

∑n
j=1 aij

ni
*(

1
10000

)
Hectares

LSI Landscape Shape 
Index: The ratio 
between the actual 
landscape edge 
length (E) and the 
hypothetical 
minimum edge 
length min E.

LSI =
E

minE 

LSI =
0.25Pij

̅̅̅̅̅aij
√

Scalar 
[1, ∞]

AI Aggregation Index: 
The degree of 
aggregation or 
clumping.

AI =

[
gii

max(gii)

]

*100
% 
[0,100]

ED Edge Density: An 
landscape 
configuration 
description index 
which equals all 
edges in the 
landscape in 

ED =
E
A

m/ha 
[0,∞]

Table 1 (continued )

[1] Individual Characteristics

Term Definition Calculator Unit 
[Value 
range]

relation to the 
landscape area.

AWMSI Area-Weighted 
Mean 
Shape Index: 
Averaging the 
shape index value 
of all landscape 
patches, with the 
perimeter of patch 
(Pij), the area of 
patch (aij), the total 
area of the 
landscape (A), 
weighted by the 
patch areas.

AWMSI =
∑m

i=1

∑n
j=1

[
2ln(0.25Pij)

ln( ̅̅̅̅̅aij
√

)
)(

aij

A
)

]
Scalar 
[1, ∞]
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models, and (4) ML/DL LUR hybrid models.

4.5.1.1. Spatial estimation models. These are divided into two sub-types: 
interpolation methods and spatial regression models. 

• Interpolation methods, such as Inverse Distance Weighting (IDW) 
and kriging (Ramos et al., 2016), estimate air quality in unmonitored 
areas using mathematical and geostatistical approaches. They rely on 
spatial relationships based on distances to known points, which often 
overlook other influential variables, leading to large margins of 
error. As a result, these methods are now primarily used for pre
processing, such as filling data gaps.

• Spatial regression models, particularly the Geographically Weighted 
Regression (GWR) model (Li et al., 2017), account for variable 
autocorrelation and heterogeneity, making them less dependent on 
ground-based stations.

4.5.1.2. Traditional land use regression (LUR) models. LUR models 
derive air quality (dependent variable) from station monitoring data and 
extract auxiliary variables (independent variables) are from buffer zones 
around the stations. 

• Their accuracy is limited by station location and density, with most 
located in urban areas. Auxiliary variables extracted from multiple 
buffer zones can lead to data redundancy, collinearity and other is
sues, making variable selection critical. Common methods include 
correlation analysis and the Variance Inflation Factor (VIF).

• Although typically reliant on Multiple Linear Regression or stepwise 
(forward/backward) methods, LUR models struggle with non-linear 
relationships and handling large datasets effectively. Fig. 5 illustrates 
traditional LUR workflows (Han et al., 2022a; Kong and Tian, 2020; 
Guo et al., 2020; Van Ryswyk et al., 2019; Liu et al., 2019; Masri 

et al., 2019; Wu et al., 2017; Wu et al., 2015a; Meng et al., 2015; Rao 
et al., 2014).

4.5.1.3. Machine/deep learning prediction models. As machine learning 
(ML) and deep learning (DL) algorithms advance, ML/DL models are 
becoming as popular tools for predicting and analysing large, multidi
mensional datasets. These models excel at identifying non-linear re
lationships between air quality and auxiliary variables, surpassing 
traditional models by incorporating diverse data types (e.g., 3D variable 
indices) and sources (e.g., satellite AOD datasets) without reliance on 
ground monitoring stations. In the era of big data, this adaptability is 
invaluable. However, effective data cleaning and preprocessing are 
essential to address challenges like missing values and varying dataset 
resolutions. A key limitation of ML/DL models is their “black boxes” 
nature, which hinders interpretability. Techniques like feature impor
tant analysis are necessary to enhance understanding. Fig. 6 (left) 
summarises the ML/DL predictive modelling process (Tella and Balo
gun, 2021; Shogrkhodaei et al., 2021; Liu et al., 2020; Li et al., 2020b; 
Zhang and Hu, 2017).

4.5.1.4. ML/DL LUR hybrid models. To address the limitations of indi
vidual methods, a combined approach integrating LUR with ML/DL 
techniques has been developed. Based on ground monitoring data, LUR 
extracts buffer data, while ML/DL algorithms process large multidi
mensional datasets and analyse non-linear relationships. Fig. 6 (right) 
presents a flowchart of the mixed ML/DL LUR predictive air quality 
model (Qi et al., 2022; Babu Saheer et al., 2022; Han et al., 2022a).

4.5.2. Feature variable importance ranking
Across 19 reviewed articles on predictive air quality models, 55 

feature variables were utilised. Five studies included feature variable 
importance analysis during model development. Table 2 summarises the 
results, with two studies focused on PM2.5 prediction (Shogrkhodaei 

Fig. 2. Vegetation-related indices and numbers of associated research articles reviewed.
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Fig. 3. Non-vegetation related indices and numbers of associated articles reviewed.
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et al., 2021; Li et al., 2020b) and three on NO2, O3, and PM10, respec
tively (Qi et al., 2022; Han et al., 2022a; Tella and Balogun, 2021). 
Despite variations in feature selection and ranking, three common var
iables—humidity, maximum temperature, and elevation—were consis
tently used in modelling.

5. Discussion

5.1. Transition of the indices’ measurements and prediction models

The initial search for this systemic review, conducted in early 2023, 
targeted studies from the past decade, a period marked by: (1) the 
proliferation of data sources through advancements in remote sensing 
and digital imaging, and (2) improved computational performance 
driven by machine learning and deep learning innovations.

5.1.1. The transition of air quality measurements and vegetation-related 
indices

Ground-based station monitoring (Tables S.2–S.4) remains widely 
used for direct and accurate air pollutant measurements. Since 2017, 
satellite sensing and online datasets have gained prominence, offering 
broader geographic coverage and higher resolution. Despite these ad
vancements, ground-based monitoring remains essential for retrieving 
target air pollutant concentrations and validating satellite-derived data. 
Its role has evolved from a primary data source to a verification tool, 
improving research efficiency by addressing the spatial and cost limi
tations of ground monitoring networks and expanding air quality 
datasets.

Vegetation-related indices quantify horizontal and vertical charac
teristics. Horizontal indices, such as satellite-derived NDVI and land use 
metrics (e.g., PLAND), are preferred for their simplicity and ease of use, 
whereas vertical indices like Leaf Area Index (LAI) and porosity require 
specialised instruments and manual labour, resulting in smaller datasets. 
Landscape pattern metrics are less common due to their complexity.

Since 2020, street view images have provided an accessible, low-cost 
method for capturing vertical vegetation characteristics in urban areas. 
Advances in machine learning and deep learning have enhanced image 
analysis, significantly improving the efficiency and applicability of 
street-view images in urban greening research.

5.1.2. The evolution of air quality prediction models
Air quality prediction models have advanced from relatively simple 

spatial estimation techniques to land use regression (LUR) models using 
linear regression, and, after 2020, to machine learning and deep 
learning models. By 2022, hybrid models combining machine learning, 
deep learning, and LUR emerged, driven by high-performance compu
tational algorithms capable of processing high-dimensional data and 
capturing complex non-linear relationships. Earlier methods like inverse 
distance weighting (IDW) and Kriging are now primarily used as pre
processing tool to fill missing data and harmonise dataset resolutions.

5.1.3. Some observations of the latest research trends (2023–24)
Since concluding our initial search for this systematic review, we 

have noted ongoing trends reported in recent research (post-2023). 
Traditional studies continue to focus on the impact of vegetation on air 
pollutants through localised sampling in specific areas such as schools, 

Fig. 4. Mapping the connections between Vegetation-Related Indices, Air 
Quality Indicators (Air Pollutants), and Non-Vegetation Related Indices used in 
the 79 original research articles reviewed.

Fig. 5. Land use regression (LUR) based air quality models using multiple linear regression (left), stepwise (forward/backward) linear regression (right).
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elderly care centres, and parks (Pan et al., 2024; Wang et al., 2024b; Wu 
et al., 2024; Ta and Promchan, 2024). Meanwhile, the growing avail
ability of large datasets, including remote sensing data, has enabled 
broader-scale analyses of spatiotemporal air quality and vegetation 
distribution (Liu et al., 2024; Saha et al., 2024; Naboureh et al., 2024; 
Sheng et al., 2023; Kan et al., 2023; Mansourmoghaddam et al., 2023).

Recent advancements in remote sensing and street-view imaging 
have enhanced the quantification of urban vegetation. Machine learning 
(ML) and deep learning (DL) algorithms are increasingly applied to 
image-based tasks such as vegetation detection, canopy identification, 
and species classification. High-resolution datasets (e.g., WorldView-2/ 
3 series, GeoEye-1, Planet Labs’ SkySat, and Pleiades) enable detailed 
vegetation mapping (Guo et al., 2023; Sicard et al., 2023). Furthermore, 
integrating 3D vegetation analysis from street-view imagery marks a 
shift from traditional 2D studies. AI-driven computer vision now extracts 
3D structural attributes, including vertical dimensions, offering deeper 
insights into urban greenery (Gupta et al., 2024; Xu et al., 2023). ML and 
DL algorithms are also pivotal in air quality prediction, improving 
analysis of high-dimensional datasets and assessing interactions among 
multiple variables (Wang et al., 2024a; Gündoğdu and Elbir, 2024). 
However, isolating the effects of individual factors remains a challenge, 
limiting the robustness of these analyses.

5.2. Limitations of this systematic review

We used the PRISMA framework to systematically review literature 
on the relationships between vegetation morphology, non-vegetation 
factors, and air quality in real urban environments. The inclusion and 
exclusion criteria defined the search and review scope, though some 
limitations remain.

5.2.1. Short of a meta-analysis
In reviewing prior research, we initially considered conducting a 

meta-analysis to evaluate the impact of vegetation on air quality 
improvement. However, significant variations in research scales, 
indices, methodologies, and metrics rendered a consistent meta-analysis 
infeasible. For instance, studies using the NDVI index employed 
different air quality indicators (e.g., AOD in Yang et al., 2022, and PM2.5 
in Llaguno-Munitxa et al., 2021) or distinct data processing methods (e. 
g., correlation analysis in Yang et al., 2022, and random forest modelling 
in Shogrkhodaei et al., 2021). As a result, we adopted a qualitative 
approach, organising findings into two methodological themes: 

correlation/regression studies and predictive models. This enabled us to 
map the range of air quality indicators, vegetation indices, urban form 
indices, and meteorological data, as well as the predictive models 
developed over the past decade.

While a meta-analysis in this field is feasible, it was not suitable at 
the time of this review. Future systematic reviews could enable meta- 
analyses by focusing on specific research questions addressed by mul
tiple studies, ensuring consistency in metrics such as vegetation indices 
(e.g., NDVI) or types of green infrastructure (e.g., urban trees or green 
roofs/walls) within defined climatic regions and/or seasons. Such meta- 
analyses could adopt methodologies similar to those in evidence-based 
medicine, which is well developed and widely applied.

5.2.2. Limited green infrastructure types
Urban green infrastructure (GI) encompasses diverse forms beyond 

traditional plantings, including green walls and roofs, which play key 
roles in urban ecology. This review focuses on indices for quantifying 
vegetation characteristics, assuming their broad applicability across 
vegetation types. For example, NDVI captures horizontal greenery like 
green roofs, while GVI characterises vertical greenery such as street trees 
and green walls. Although, different GI types uniquely impact air 
quality—a topic warranting further review— recent studies (Vashishta 
et al., 2024; Barriuso and Urbano, 2021) highlight their potential to 
complement traditional urban vegetation.

5.2.3. Real urban environments and numerical simulations
This review focuses on studies conducted in real-world settings, 

excluding numerical simulations. Our aim is to summarise effective 
quantitative methods for complex environmental contexts in urban 
areas. While CFD-based numerical simulations can be isolate and 
quantify vegetation’s effects on air quality by simplifying urban sce
narios, they often depend on researcher-assumed parameters, poten
tially introducing biases. These assumptions may overlook the 
complexity of real-world processes involving numerous interacting 
variables. By concentrating on non-simulation research, we better cap
ture insights from analysing large-scale high-resolution field measure
ments. However, validated simulations can contribute to enhanced ML/ 
DL models where comprehensive and reliable field measurements are 
limited. In particular, these combined capabilities are essential for 
evaluating planning and design proposals which do not exist in reality. 
Comparing and combining empirical field studies with simulation-based 
findings offers a promising direction for future research.

Fig. 6. ML/DL prediction modelling (left) and ML/DL LUR mixed modelling (right).
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5.2.4. Selection of searchable databases, languages, and accessibility
We conducted a literature search on Scopus, a widely recognised 

database, yielding 3456 initial results. Scopus was chosen over alter
natives like Web of Science due to its broader journal coverage across 
disciplines relevant to vegetation, urban form, and air quality, such as 
environmental sciences, urban studies, and engineering. Its robust 
citation metrics also facilitated the identification of influential studies 
and authors, enhancing the systematic review process. While articles not 
indexed in Scopus were excluded, its comprehensive coverage and 
alignment with PRISIMA guidelines supported transparent screening 
and selection. Limiting the review to English-language and open-access 
papers may have further excluded some relevant studies.

5.3. Future research priorities

Air quality significantly impacts human health and the environment, 
prompting global policy actions. Assessing and predicting air quality 
remains challenging due to the transient nature of urban air pollution (e. 
g., emission, dispersion, deposition, resuspension, interaction with 
urban lights). This review highlights the complexity of quantifying 
vegetation’s effects on air quality in dynamic urban environments, 
where numerous variables interact. Advances in large-scale urban 
datasets from satellite and street-view imaging now enable the transition 
from 2D (planar) to 3D (volumetric) vegetation quantification. Inte
grating 3D vegetation indices with machine learning and deep learning 
shows new revenues for predictive air quality modelling. These tech
nologies also enable automated plant species recognition, supporting 
evidence-based urban greening interventions to improve air quality.

However, a key challenge lies in the “black-box” nature of AI-based 

Table 2 
Feature variable importance ranking in predictive air quality modelling.

[1] NO2 prediction: LUR using street view imagery (SVI) and satellite sensing data (Qi 
et al., 2022)

Feature variable Ranking Feature Variable Ranking

Built Environment (SVI) 3 [9] Transport Vehicles (SVI) 1 [9]
People count (SVI) 8 [9] Vegetation (SVI) 5 [9]
Natural scenery (SVI) 6 [9] Water (SVI) 7 [9]
Ozone Monitoring 

Instrument (SVI)
4 [9] Year 9 [9]

Transport Network (SVI) 2 [9] ​ ​
[2] O3 prediction: Ozone and UHI using a ML modified LUR method (Han et al., 

2022a)
Feature variable Ranking Feature Variable Ranking
Average Temperature 5 [20] Industrial and Mining Land 13 [20]
Average Wind Speed 4 [20] Major Road 12 [20]
Distance to Cultivated 

Land
9 [20] Maximum Temperature 2 [20]

Distance to Major Road 18 [20] Maximum Wind Speed 3 [20]
Distance to Printing 

Factory
10 [20] PM10 16 [20]

Distance to Ridge Line 11 [20] PM2.5 19 [20]
Elevation 6 [20] Point of Interest (POI) - 

Factory
15 [20]

Green Space 8 [20] POI - Gas Station 20 [20]
Gross Domestic Product 

(GDP)
7 [20] Population 14 [20]

Humidity 1 [20] Water Body (5000 m buffer) 17 [20]
[3] PM10 prediction: KNN, XGBoost, RF, and NB model (Tella and Balogun, 2021)
K-Nearest Neighbor (KNN) model, Selangor State, Malaysia
Feature variable Ranking Feature Variable Ranking
Average Wind Speed 2 [8] Normalized Difference 

Vegetation Index (NDVI)
6 [8]

Build-up Index 7 [8] Road Density 4 [8]
Elevation 1 [8] Soil Adjusted Vegetation 

Index (SAVI)
5 [8]

Land Surface 
Temperature

3 [8] Slope 8 [8]

XGBoost model, Selangor State, Malaysia
Feature variable Ranking Feature Variable Ranking
Average Wind Speed 2 [8] Normalized Difference 

Vegetation Index (NDVI)
6 [8]

Build-up Index 8 [8] Road Density 4 [8]
Elevation 1 [8] Soil Adjusted Vegetation 

Index (SAVI)
7 [8]

Land Surface 
Temperature

3 [8] Slope 5 [8]

Random Forest (RF) model, Selangor State, Malaysia
Feature variable Ranking Feature Variable Ranking
Average Wind Speed 2 [8] Normalized Difference 

Vegetation Index (NDVI)
7 [8]

Build-up Index 8 [8] Road Density 5 [8]
Elevation 1 [8] Soil Adjusted Vegetation 

Index (SAVI)
6 [8]

Land Surface 
Temperature

3 [8] Slope 4 [8]

Naive Bayes (NB) model, Selangor State, Malaysia
Feature variable Ranking Feature Variable Ranking
Average Wind Speed 2 [8] Normalized Difference 

Vegetation Index (NDVI)
7 [8]

Build-up Index 6 [8] Road Density 4 [8]
Elevation 1 [8] Soil Adjusted Vegetation 

Index (SAVI)
5 [8]

Land Surface 
Temperature

3 [8] Slope 8 [8]

[4] PM2.5 prediction: Seasonal models using three ML algorithms (Shogrkhodaei 
et al., 2021)

Spring model, Tehran metropolis
Feature variable Ranking Feature Variable Ranking
Average Temperature 5 [10] Maximum Wind Speed 6 [10]
Distance to Industrial 2 [10] Normalized Difference 

Vegetation Index (NDVI)
1 [10]

Humidity 8 [10] Population Density 4 [10]
Maximum Temperature 10 [10] Rainfall 7 [10]
Minimum Temperature 9 [10] Road Density 3 [10]
Summer model, Tehran metropolis
Feature variable Ranking Feature Variable Ranking

Table 2 (continued )

[1] NO2 prediction: LUR using street view imagery (SVI) and satellite sensing data (Qi 
et al., 2022)

Feature variable Ranking Feature Variable Ranking

Average Temperature 1 [10] Maximum Wind Speed 10 [10]
Distance to Industrial 7 [10] Normalized Difference 

Vegetation Index (NDVI)
6 [10]

Humidity 9 [10] Population Density 8 [10]
Maximum Temperature 2 [10] Rainfall 5 [10]
Minimum Temperature 4 [10] Road Density 3 [10]
Autumn model, Tehran metropolis
Feature variable Ranking Feature Variable Ranking
Average Temperature 6 [10] Maximum Wind Speed 7 [10]
Distance to Industrial 4 [10] Normalized Difference 

Vegetation Index (NDVI)
1 [10]

Humidity 5 [10] Population Density 3 [10]
Maximum Temperature 9 [10] Rainfall 8 [10]
Minimum Temperature 10 [10] Road Density 2 [10]
Winter model, Tehran metropolis
Feature variable Ranking Feature Variable Ranking
Average Temperature 8 [10] Maximum Wind Speed 7 [10]
Distance to Industrial 1 [10] Normalized Difference 

Vegetation Index (NDVI)
2 [10]

Humidity 5 [10] Population Density 3 [10]
Maximum Temperature 9 [10] Rainfall 10 [10]
Minimum Temperature 6 [10] Road Density 4 [10]
[5] PM2.5 prediction: Ensemble-based deep learning over California (Li et al., 2020b)
Feature variable Ranking Feature Variable Ranking
10-meter Northward 

Wind
20 [20] Maximum Temperature 4 [20]

CO 1 [20] Pressure 9 [20]
Daily Mean Downward 

Shortwave Radiation
15 [20] Product of Latitude and 

Longitude
3 [20]

Dry Deposition of Ox 19 [20] Sea Salt Concentrations in 
PM2.5

10 [20]

Elevation 18 [20] Square of Latitude 7 [20]
Humidity 16 [20] Square of Longitude 11 [20]
Impervious Layer 12 [20] Temporal Basis Function 1 2 [20]
Latitude 5 [20] Temporal Basis Function 2 14 [20]
Longitude 6 [20] Temporal Basis Function 3 17 [20]
MAIAC AOD 8 [20] Year 13 [20]
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predictions, which obscures the interactions among variables affecting 
urban air quality. Enhancing the explainability of these models is crucial 
to inform urban planning and design decisions effectively.

5.4. Significant of this review

This review summarises advancements in vegetation-related indices, 
urban form, and their impact on urban air quality over the past decade, 
emphasizing their relevance to urban and landscape design. It also re
views air quality prediction models and algorithms, highlighting data- 
driven approaches and future research directions. These insights pro
vide urban planners, designers, and policymakers with a foundation for 
informed science-based decisions for creating sustainable, air-purifying 
environments.

6. Conclusion

Informed by previous review articles, we set out a new systematic 
review to provide an up-to-date summary of 79 studies identified that 
focus on effects of vegetation and urban morphological characteristics 
on air quality. We identify four key questions to be addressed in the new 
systematic review concerning the range of air quality indicators and data 
sources used in the studies, the indices defined for quantifying vegeta
tion morphology and urban form, and predictive models for assessing air 
quality of real urban environments.

There are nine groups of air quality indicators used ranging from 
particulate matter (PM) to aerosol optical depth (AOD) which is also 
increasingly used to derive air pollutant concentrations of various kinds 
covering large urban areas. Among them, PM2.5 is the AQ indicator 
attracting the largest number of studies due to its significant impact on 
public health. In terms of data sources, we observe increasing utilisation 
of combined ground-based air quality monitoring measurements and 
satellite measurements to obtain the spatial-temporal resolutions 
required in the studies

In vegetation indices, two-dimensional indices are more commonly 
used to quantify vegetation morphological attributes. This is due to the 
fact that remote sensing technology has enabled quantification of top- 
view features over large areas, such as NDVI. In contrast, three- 
dimensional indices that capture vertical vegetation characteristics are 
less developed due to the technical challenge of semantic segmentation 
of vegetation in large volumes of urban scenes or street views.

Traditional on-site measurements can only provide small-scale ver
tical characteristics such as canopy features. With the advancement of 
large urban image datasets, including street view scans, advanced 
machine-learning techniques are being developed and applied in 
quantifying vertical dimension of urban vegetation in real cities. How
ever, due to limited open-source urban image datasets and reliable 
image processing techniques, this remains a research topic to be further 
addressed in future research. More importantly, how vegetation indices 
defined and measured in both horizontal and vertical dimensions may 
be combined to form new three-dimensional vegetation indices remain 
to be further developed.

This systematic review identifies and summarises several air pollu
tion prediction models. It shows that the traditional Land Use Regression 
(LUR) model is relatively well-established. LUR was frequently used pre- 
2020, but since then, the advancement of machine learning (ML) and 
deep learning (DL) algorithms has led to the rapid development of ML/ 
DL models, which exhibited better prediction performance due to the 
computational power and intelligence unavailable before.

Finally, our attempt at summarising how vegetation and urban form 
variables may interact with different air pollutants can be explained to 
some extent by a feature importance analysis. We find that conducting a 
thorough meta-analysis of the effects of vegetation an urban form on air 
quality is not without substantial difficulties. There is a need for estab
lishing a comprehensive air pollution research data repository, linking 
related studies to enable classifying and summarising data by pollutant 

types, research locations, spatial-temporal scales, and modelling 
methods. This could lead to identification of the key variables impacting 
specific air pollutants as the basis for bringing forward evidence-based 
guidelines applicable to cleaner air landscaping planning and urban 
design.

In conclusion, this systematic review offers a comprehensive sum
mary of advancements in vegetation-related indices and other influ
encing factors, such as urban form, over the past decade, focusing on 
their impact on urban air quality. These elements are deeply intertwined 
with urban design, making our findings highly relevant for urban 
planners and designers aiming to create environments that promote 
nature-based solutions to air purification. Furthermore, we summarise 
the air quality prediction models and algorithms developed over the past 
ten years, prompting the emerging research trends of developing large- 
scale data-driven approaches. Advance in quantifying effects of vege
tation on air quality in real urban environments can improve the pro
ficiency of evidence-based planning and design decision-making.

Why is the paper significant?

This systematic review paper has been developed by first reviewing 
23 review articles published during 2015–2022 focusing on vegetation, 
urban form and air quality. We address the limitations of the previous 
reviews by adopting the PRISMA protocols, identifying those studies 
carried out in real urban environments, and summarising the hierar
chical correlation or regression accounts of the vegetation’s effects on 
mitigating concentrations of air pollutants.

Based on the search and selection criteria, 301 papers were identified 
in the first round of the abstract search, of which 79 papers were 
retained after a more detailed extraction from the open access full texts. 
Our review answers four key questions: 

• What urban air quality indicators and data sources were used in the 
studies examining the effects of vegetation on urban air quality?

• What metrics or indices were used to quantify the morphological 
characteristics of urban vegetation in studies on air quality?

• What metrics or indices were used to quantify urban form of real 
cities for air quality studies?

• What data sources and methods were used for developing predictive 
models for assessing urban air quality of real urban environments?

We present a novel data visualisation scheme to highlight the in
terrelations of the air quality indicators, vegetation, and urban 
morphology indices, showing frequency of studies on different air pol
lutants and their associated variables.

The outcome of our review shows clearly that PM2.5 is most used among the nine groups 

of air quality indicators identified in the studies, highlighting its signifi
cance of public health impact. We draw out the interactions between air 
quality indicators, vegetation-related indices, and non-vegetation urban 
form indices. There are 19 studies (24 %) reporting predictive air quality 
models employing different methods and data sources. We summarise 
feature variable importance analyses of 55 variables through a ranking 
table. We conclude by pointing out that a new multi-view urban vege
tation index scheme for quantifying the effects of inner urban greenery 
on the spatiotemporal distribution of PM2.5 concentrations can be 
developed on the basis of large-scale high-resolution air quality datasets, 
large open-source urban images repositories, and advance computa
tional learning capabilities.
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Appendix

Table A1a 
The previous eight reviews on mitigation and removal capacity of vegetation (Keywords: mitigation, phytoremediation, vegetation traits, air pollutants capture).

Article Review Questions Summary of Review Findings

(Hellebaut et al., 
2022)

Current understanding and knowledge gaps in air quality and plants 
traits on green walls, evidence of knowledge application in design 
practice

Hairiness, roughness and leaf size are the traits that affect particulate matter (PM) 
capture. Review six green wall designs in Belgium & showing knowledge of 
plants traits and air pollutants removal in green wall design remained partial.

(Han et al., 2022b) Phytoremediation of indoor air pollutants; removal efficiency of plants 
on different air pollutants under different environmental settings

Absorption and purification of different pollutants (formaldehyde, aromatic 
compounds and inorganic pollutants) are affected by different trait variables (leaf 
characteristics, planting patterns, species). The effectiveness of pollutant removal 
differs under different environmental settings (lab-scale studies, real-world site- 
specific indoor/outdoor conditions).

(Wróblewska and 
Jeong, 2021)

Effectiveness of plants on removing particulate matter (PM) 1) Deposition on leaf surfaces; 2) Factors affecting PM capture efficiency: leaf 
area index, morphological characteristics of leaf surfaces, environment (e.g., 
wind), and 3D geometry of city design; 3) different types of green infrastructure - 
green roofs, living walls, water reservoirs, urban farming; 4) PM removal 
capacity could be improved by species selection and increasing biodiversity.

(Diener and Mudu, 
2021)

Effects and mechanisms of green spaces on reducing PM exposure to 
protect public health

1) Three mechanisms to reduce PM exposure: deposition, dispersion and 
modification; 2) Public health interventions to reduce PM exposure should 
consider sensitivity of green spaces in mitigating PM exposure: location of green 
spaces at a regional scale, porosity of green spaces at a local scale.

(Corada et al., 2021) Effective leaf traits for enhancing PM capture 1) Coniferous needle leaves, 2) Small, rough and textured broad-leaves, 3) 
Extended oval shapes, 4) Waxy coatings and high-density trichomes; 5) Ancillary 
factors and the context of plantings should also be considered to improve PM 
removal, e.g., plant species, wind conditions, and locations.

(Sicard et al., 2018) Quantification of O3 removal capacity of trees, shrubs, and green roofs For O3 removal, urban trees are more efficient and cost effective than green roofs; 
broad-leaf tree species perform better than conifers, while evergreen are better 
than deciduous broadleaf.

(Gourdji, 2018) Effects of green roofs on mitigating air pollution; plant species for PM, 
O3, NO2 reduction; effects of green roofs on air quality in the Montreal 
region, Canada

Air pollutants removal processes: 1) Deposition of PM, 2) Deposition of O3 on 
plant or soil surfaces via stomatal conductance and non-stomatal uptake, 3) NO2 
removed by stomatal absorption; 4) Small Zone 5 hardiness tolerant plants on 
intensive green roofs was recommended for Montreal.

(Huang et al., 2018) PAHs removal; PAHs accumulating capability of pine needles, Holm oak 
leaves, and moss

1) PAHs (Polycyclic aromatic hydrocarbons) uptake via absorption and 
adsorption; 2) Moss perform better in PAHs capture than oak leaves and pine 
needles; 3) Environment factors (temperature, seasonality, photolysis) could 
affect the transfer process of PHAs from atmosphere to vegetation.

Table A1b 
The previous reviews of deposition and dispersion effects and processes of vegetation (Keywords: deposition, dispersion, aerodynamic, CFD, green walls, green 
infrastructure).

Article Review Questions Summary of Review Findings

(Li et al., 2022) Removal of NO2 by dry deposition of plants Plant structure, chemical composition of leaves, nitrogen content of leaves, 
meteorological conditions, and other related factors affect the deposition mechanism 
and the efficiency of NO2 removal.

(Ysebaert et al., 
2021)

Effectiveness of green walls in removing PM Species, pollution level and residence time affecting PM deposition on green walls. 
More field, wind tunnel and model validation studies are needed to eliminate 
discrepancies about the key parameters affecting PM capture by green walls.

(Badach et al., 
2020)

Effects of urban greenery on mitigating air pollution in Polish cities Urban greenery can have combined deposition and aerodynamic effects on air quality. 
Critical evaluation of local urban planning practice in Gdánsk, Warsaw, and Poznán 
found limited applicability of the known effects due to lack of accurate models and 
tools.

(Tiwari et al., 
2019)

Green infrastructure (GI) impact on air pollution and health risk 
assessment

Ten studies that have quantified the linkage between GI, air pollution reduction and 
health benefits were identified and summarized. Simplified deposition schemes may 
lead to uncertainties in removal estimation. Future dispersion models need to account 
for wind speed based GI porosity as well as GI at different spatial scales (microscale and 
macroscale).

(continued on next page)
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Table A1b (continued )

Article Review Questions Summary of Review Findings

(Buccolieri 
et al., 2019)

The effects of urban trees on air quality and thermal conditions learned 
from Computational Fluid Dynamics (CFD) studies

Parameterizations of urban vegetation (trees) are appropriate to account for 
aerodynamic and deposition effects; resuspension and thermal effects of different types 
of trees need more works in CFD; “the right tree in the right street” is a better approach.

(Janhäll, 2015) Vegetation as ecosystem services for air quality improvements – effects 
of vegetation choice on air pollution from different sources and particle 
sizes

Urban vegetation effects on air quality summarised as 1) deposition process (particle 
properties and vegetation properties) at different scales (parks, regional); 2) dispersion 
effect of vegetation barriers. The studies reviewed include on-site measurements, wind 
tunnel studies and CFD modelling.

Table A1c 
Previous reviews of the influence of vegetation in urban streets/roads (Keywords: barriers, obstacles, street canyons, open roads, street greening).

Article Review Questions Summary of Review Findings

(Buccolieri et al., 
2022)

Influence of obstacles (porous & non-porous) on urban canyon 
ventilation including air pollutant dispersion

The isothermal flow dispersion effects of porous (trees, hedgerows) and non-porous 
obstacles (parked cars, low boundary walls or baffles, noise/roadside barriers, wind 
catchers, solar chimneys), and the efficacy, costs, as well as pros and cons.

(Chaudhuri and 
Kumar, 2022)

Strategic urban greening for long-term air pollution prevention and 
control measures

PRISMA-based review of global literature (post-2005) and a meta-analysis to be 
considered by air quality regulatory authorities with particular references to Indian 
cities to enhance tree species selection, removal strategies in street canyon and open 
road environment.

(Tomson et al., 
2021)

Optimal form and arrangement of Green Infrastructure (GI) for air 
quality in street canyons

Deposition and dispersion are the main impact pathways for vegetation on air 
pollution. The effectiveness of different GI forms (trees, hedges, green roofs, green 
walls and green screens) in the street canyon environment and the methods for 
assessing effectiveness.

(Barwise and 
Kumar, 2020)

Vegetation barriers in open-road environment, optimal configuration 
as barriers between traffic emissions and adjacent spaces

Effective barriers design principles in different spatial scales (city scale, local scale) 
and plant selection recommendations (e.g., ecophysiological and morphological 
characteristics, species emissions) for open-road environment and street canyons in 
the UK.

(Mori et al., 2018) The effect of air pollutants on human health, and the vegetation 
characteristics help to optimise air pollutants interception

Species selection and planting schemes (density of vegetation, disposition of plants, 
global dimensions of GI) should be considered according to different plating site 
characteristics (open areas vs. street canyons).

(Abhijith et al., 
2017)

Aerodynamic effects and reduction potentials of vegetation in street 
canyon and open road; vegetation types and characteristics help air 
pollution reduction

1) In street canyons, hedges improve air quality while trees led to deterioration; 2) In 
open road, low porosity and tall vegetation helps to downwind pollutant reductions; 
3) Green walls and roofs on building envelopes can be effective ways to improve air 
quality.

(Gallagher et al., 
2015)

Passive methods for improving air quality and reducing personal 
exposure – porous and solid barriers

The strengths and limitations and modelling approaches of porous barriers (trees 
and vegetation) and solid barriers (noise barriers, low boundary walls, parked cars).

Table A1d 
The previous reviews of plants as urban ecosystem services where air quality is a part (Keywords: urban ecosystems, nature-based, pollutants removal, urban greening, 
microclimate).

Article Review Questions Summary of Review Findings

(Biswal 
et al., 
2022)

Nature-based systems for reducing pollutants in storm water, rainwater 
and urban air

1) Physico-chemical removal through filtration, adsorption, precipitation, and 
complexation; 2) Biological removal via air phytoremediation plants; 3) Roadside 
removal via vegetation characteristics of height, thickness, coverage, porosity.

(Ernst et al., 
2022)

The relationships between urban greening, canopy layer urban heat 
island (UHI) and urban pollution island (UPI), air quality, and urban 
microclimate

1) The links between microclimate and air quality studies were weak; 2) tools for 
assessing greening’s impacts on both microclimate and air quality with good accuracy at 
the city scale were not well developed; 3) interactions between plant functioning, 
microclimate and atmospheric composition may hold the key to modelling the links 
between urban greening, UHI, UPI.

Table A2 
Summary of air quality indicators/indices and measurements from ground stations.

Article Source/Agency Air 
Pollutants

No. of 
Stations

(O’Regan et al., 2022) Purple Air Network for Cork City, Ireland PM2.5, PM10, 
PM1

12

(continued on next page)
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Table A2 (continued )

Article Source/Agency Air 
Pollutants 

No. of 
Stations

(Tella and Balogun, 2021, Halim et al., 2020, Shahrin et al., 2019) the Malaysian Department of Environment (DOE) PM10, CO, O3, 
NO, NO2, NOx, 
SO2

8

(Wang et al., 2022b, Zhao et al., 2022, Li et al., 2021b,Wang et al., 2021, Han et al., 
2020, Luan et al., 2020, Liu et al., 2019, Tian et al., 2019, Wang et al., 2018b, Zhang 
and Hu, 2017, Chen et al., 2016, Wu et al., 2015b, Wu et al., 2015a)

China Environmental Monitoring Station (http://www. 
cnemc.cn/)

PM2.5, PM10, 
SO2, NO2, O3, 
CO, AQI,

1589

(Khan et al., 2022) Environmental Protection Apartment, Punjab, Lahore NOx, CO, SO2, 
PM10

20

(Zeng et al., 2022) Shenzhen Municipal Ecological Environment Bureau, China 
(http://meeb.sz.gov.cn/)

PM2.5 74

(Babu Saheer et al., 2022) UK Air, Department for Environment Food & Rural Affairs 
(uk-air.defra.gov.uk/)

PM2.5, PM10, 
NO2

1500+

(Han et al., 2022a) Xi’an Air Quality Monitoring Stations, China O3 139

(Shogrkhodaei et al., 2021) Tehran Air pollution control stations, Iran PM2.5 23

(Li et al., 2020c) Shenyang Environment Monitoring Center, China PM2.5, PM10, 
NO2, SO2

11

(Tian et al., 2020) Georgia Department of Natural Resources, Environmental 
Protection Division (EPD)

PM2.5 9

(Li et al., 2020a) Weifang PM2.5 Monitoring Stations, China PM2.5 38

(Kong and Tian, 2020) Beijing Municipal Environmental Monitoring Center, China 
(BMEMC 2018)

PM2.5 35

(Guo et al., 2020) Xi’an Air Quality Daily Reporting System, China (http:// 
www.xianemc.gov.cn/)

PM2.5 13

(Guo et al., 2019) Tianjin air pollution monitoring stations, China NO2 23

(Li et al., 2017) US Environmental Protection Agency (EPA)’s Air Quality 
System (AQS) (www.epa.gov/aqs)

PM2.5 55

(Wu et al., 2017) Taipei metropolis air pollutant monitoring database, 
Taiwan Air Quality Monitoring Network (airtw.moenv.gov. 
tw/eng/)

PM2.5 17

(Ramos et al., 2016) National Air Pollution Surveillance (NAPS) network of 
Environment Canada

PM2.5 10

(Meng et al., 2015) Shanghai Environmental Monitoring Centre (SEMC), China NO2 38

Table A3 
Summary of satellite sensing air quality datasets.

Article Dataset Resolution

(Rahman and Haque, 2022) Landsat data to retrieve AOD (earthexplorer.usgs.gov) 30m

(Islam et al., 2012) Sentinel-5P Level-3 NO2 Daily Product (V1) 0.01 arc-degree

(Qi et al., 2022) OMI/Aura NO2 Tropospheric, Stratospheric & Total Columns MINDS Daily L3 Global Gridded (DOI: 10.5067/ 
MEASURES/MINDS/DATA304)

0.25◦ × 0.25◦

(Sun et al., 2022, Xie and Sun, 2021, Li 
et al., 2020b)

MODIS MAIAC remote sensing AOD data (MCD19A2) (lpdaac.usgs.gov/products/mcd19a2v006) 1km

(Zhang and Hu, 2017) MODIS Collection 6 Level 2 aerosol products (ladsweb.modaps.eosdis.nasa.gov/archive/allData/6) 3km

(Li et al., 2017) MODIS AOD Level 2 product (Collection 5.1) 10km

(Li and Myint, 2021) Landsat 5 satellite images to retrieve AOD 60m

(Syafei et al., 2019) GOME-2 MetOP-A satellite datasets for NO2 80*40km² or 
80*10km²

(He et al., 2019) Aqua and Terra MODIS Collection 6 Level 2 aerosol products 3km

(Wang ChengHao et al., 2017) MODIS Terra Atmosphere Aerosol Level 2 Product 3km

(Ye et al., 2016) HJ-1B satellite images for AOD retrieving 30m
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Table A4 
Summary of publicly available online datasets.

Article Dataset Resolution

(Hassan et al., 2022) Socioeconomic Data and Applications Center (SEDAC) and Sentinel-5p data of the European Space Agency for the last 18 years 
(2002–2020)

1km

(Lin and Jiang, 2022) Ground-level air pollutants for China (ChinaHighAirPollutants, CHAP) PM2.5 1km

(Wei et al., 2021) Socioeconomic Data and Applications Center (sedac.ciesin.columbia.edu/search/data?contains=PM2.5) 1km

(Li et al., 2021b) Gridded global surface PM2.5 concentration dataset 0.01◦

(van Oorschot et al., 2021) Annual mean PM10 concentrations Map, Hague (www.atlasleefomgeving.nl/kaarten) 25m

(Wang et al., 2019) Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) fossil fuel emission dataset from the Center for Global Environmental 
Research (db.cger.nies.go.jp/dataset/ODIAC/), National Institute for Environment Studies

1km

(Wang et al., 2020a, Lu 
et al., 2019)

The global annual average surface PM2.5 concentrations grids provided by Atmospheric Composition Analysis Group (ACAG) at 
Dalhousie University

0.01◦

(Bechle et al., 2017) Publicly available global estimates of gridded annual surface NO2 concentrations. 0.1◦ × 0.1◦

Table A5 
Summary of air quality data pre-processing methods.

Article Method Description

(Hassan et al., 2022, Sun et al., 2022, Halim et al., 2020, Arista et al., 2020, Li 
et al., 2020a, Shahrin et al., 2019, Cui et al., 2019, Chen et al., 2016, Ramos 
et al., 2016)

Inverse Distance 
Weighted (IDW)

IDW is one of the commonly used methods of spatial interpolation in air 
pollution prediction areas. It makes predictions on the concentration of 
unknown points based on a function of inverse distance from a known point, 
assuming that the closer they are to the known point, the greater the 
influence.

(Sun et al., 2022, Llaguno-Munitxa et al., 2021, Shogrkhodaei et al., 2021, Xie 
and Sun, 2021)

Kriging 
Interpolation

A set of geostatistical interpolation techniques wherein the value at an 
unobserved location is estimated through a linear combination of values 
from neighbouring locations. The weights assigned to these values are 
determined by a semivariogram which considers the spatial correlation. It 
has an effective performance in the data points having spatial 
autocorrelation. Ordinary Kriging and Universal kriging are wildly used in 
air pollution prediction areas.

(Li et al., 2020b, Zhang and Hu, 2017) Linear Regression A commonly employed technique for replacing missing values in a dataset. 
Typically, it involves predicting the missing data in the target dataset by 
establishing a linear relationship with a reference dataset.

(Qi et al., 2022, Yang et al., 2022, Hassan et al., 2022, Wei et al., 2021, Xie 
and Sun, 2021, Wang et al., 2019, Lu et al., 2019, Wang et al., 2018b, Wang 
ChengHao et al., 2017, Ye et al., 2016)

Resampling Common data processing methods for uniform resolution of a different data 
set. It changes the dataset’s spatial resolution by aggregating or interpolating 
values. Common types include Nearest Neighbor and Bilinear Interpolation.

Table A6 
Summary of vegetation-related indices papers.

Vegetation-related indices Articles

Vegetation Structure (Niu et al., 2022, Jiang et al., 2021, Qiu et al., 2019, Qiu et al., 2018, Chen et al., 2015)

Land Use/Land Cover (LULC) (Sun et al., 2022, Zeng et al., 2022, Han et al., 2022a, Llaguno-Munitxa et al., 2021, Li and Myint, 2021, Xie and Sun, 2021, Liu 
et al., 2020, Li et al., 2020b, Halim et al., 2020, Li et al., 2020c, Li et al., 2020a, Tian et al., 2020, Luan et al., 2020, Kong and Tian, 
2020, Guo et al., 2020, Qiu et al., 2019, Van Ryswyk et al., 2019, Shahrin et al., 2019, Liu et al., 2019, Guo et al., 2019, Fan et al., 
2019, Chen et al., 2016, Ye et al., 2016, Wu et al., 2015b, Wu et al., 2015a, Meng et al., 2015, Rao et al., 2014)

Count (Babu Saheer et al., 2022, Llaguno-Munitxa et al., 2021, Yli-Pelkonen et al., 2017)

Leaf Area Index (LAI) (Niu et al., 2022, van Oorschot et al., 2021, Wang et al., 2020b)

Canopy Cover/Density(CC/CD) (Niu et al., 2022, Jiang et al., 2021, Wang et al., 2020b, Qiu et al., 2018, Chen et al., 2015, Islam et al., 2012)

Diameter at Breast Height (DBH) (Niu et al., 2022, Yli-Pelkonen et al., 2017)

Vegetation Height (VH) (Jiang et al., 2021, Wang et al., 2020b, Hart et al., 2020)

Species Related (Proportion of Species and 
Species Richness)

(Niu et al., 2022, Wang et al., 2020b, Grzędzicka, 2019, Desyana et al., 2017, Yli-Pelkonen et al., 2017)

Porosity (Grzędzicka, 2019, Chen et al., 2015, Islam et al., 2012)

Percentage of Vegetation Area / Vegetation 
Coverage (PAV/VC)

(Grzędzicka, 2019, Masri et al., 2019, Lu et al., 2019, Syafei et al., 2019, Bechle et al., 2017)

NDVI (Normalized Difference Vegetation Index) (Sun et al., 2022, Zeng et al., 2022, O’Regan et al., 2022, Yang et al., 2022, Hassan et al., 2022, Lin and Jiang, 2022, Zhao et al., 
2022, Deb et al., 2022, Llaguno-Munitxa et al., 2021, Li and Myint, 2021, Tella and Balogun, 2021, Li et al., 2021b, Wang et al., 
2021, Wei et al., 2021, Shogrkhodaei et al., 2021, Li et al., 2020b, Kong and Tian, 2020, Hart et al., 2020, Van Ryswyk et al., 2019, 

(continued on next page)
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Table A6 (continued )

Vegetation-related indices Articles

Han et al., 2020, Wang et al., 2020a, Arista et al., 2020, Wang et al., 2019, Masri et al., 2019, Cui et al., 2019, Tian et al., 2019, He 
et al., 2019, Wang et al., 2018a, Wang et al., 2018b, Wang ChengHao et al., 2017, Zhang and Hu, 2017, Li et al., 2017, Wu et al., 
2017, Farrell et al., 2015, Wu et al., 2015a, Dadvand et al., 2015)

SAVI (Soil Adjusted Vegetation Index) (Tella and Balogun, 2021)

EVI (Enhanced Vegetation Index) (Islam et al., 2022)

GTCT (Greenness Tasseled Cap Transformation) (Ramos et al., 2016)

GVI/GVA (Green View Index / Green View 
Amount)

(Zeng et al., 2022, O’Regan et al., 2022, Wang et al., 2022b, Qi et al., 2022, Liu et al., 2020)

VGVI () (Labib et al., 2021)

Percentage of Landscape Types (PLAND) (Wang et al., 2022a, Fan et al., 2019, Ye et al., 2016, Wu et al., 2015b)

Patch Density (PD) (Wang et al., 2022a, Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Fan et al., 2019, Ye et al., 2016, Wu et al., 2015b)

Landscape Shape Index (LSI) (Wang et al., 2022a, Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Ye et al., 2016)

Class Area (CA) (Tian and Yao, 2022, Tian et al., 2020)

Largest Patch Index (LPI) (Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Ye et al., 2016)

Aggregation Index (AI) (Tian and Yao, 2022, Li et al., 2021b, Tian et al., 2020, Fan et al., 2019)

Area-Weighted MeanShape Index (AWMSI) (Li et al., 2021b)

Patch Cohesion Index (COHESION) (Li et al., 2021b)

Edge Density (ED) (Tian et al., 2020, Ye et al., 2016, Wu et al., 2015b)

Contagion (CONTAG) (Ye et al., 2016, Wu et al., 2015b)

Shannon’s Evenness Index (SHEI) (Wu et al., 2015b)

Mean Patch Size (MPS) (Fan et al., 2019)

MSPA (Li et al., 2021b)

Table A7 
Types of air quality prediction models, algorithms, output resolutions, and validation.

Model Article Algorithm Resolution Model Validation and Prediction Accuracy

Spatial Estimation Models (Liu et al., 2019) OK; IDW 500m LOOCV

(Li et al., 2017) GWR 10km 10-fold CV; RMSE/MAE/RRMSE/RMAE-

(Ramos et al., 2016) KED; IDW; KED- 
IDW

100m LOOCV

(Meng et al., 2015) IDW; OK 1km LOOCV; R²/RMSE

Traditional Land Use 
Regression (LUR) 
Models

(Han et al., 2022a) / 500m grid Splitting 80% training and 20% test; R²/MSE/RMSE/MAE

(Kong and Tian, 
2020)

SMR 10km grid LOOCV

(Guo et al., 2020) SMR 100m grid CV; R²/RMSE/MPE

(Van Ryswyk et al., 
2019)

BFSR 10m grid LOOCV

(Liu et al., 2019) / 500m grid LOOCV

(Masri et al., 2019) BFSR 1km grid LOOCV

(Wu et al., 2017) SLR 250m grid 10-fold CV; External Verification (out-of-sample observations from 2013)

(Wu et al., 2015a) SLR 30m grid LOOCV; RMSE/NMSE

(Meng et al., 2015) SFR 1km grid LOOCV; R²/RMSE

(Rao et al., 2014) / 200m CV

Machine/Deep Learning 
Prediction Models

(Tella and Balogun, 
2021)

XGBoost; RF; 
KNN; NB

60m grid Confusion matrix; Statistical Measures; ROC-AUC

(Shogrkhodaei et al., 
2021)

RF; AdaBoost; 
SGD

30m grid Splitting 70% training and 30% test; RMSE/MAE; ROC-AUC

(Liu et al., 2020) RF; SVM; MLR 15 m distance along the 
route

10-fold CV (Splitting 70% training and 30% test); R²/RMSE/MAE/IA

(Li et al., 2020b) Full Residual 
Deep Network

1km grid 63.3% samples for training and validation (80% training/20% validation), 
36.7% for independent test; 4 monitoring sites for independent tests; R²/ 
RMSE

(continued on next page)

M. Yao et al.                                                                                                                                                                                                                                     



Urban Forestry & Urban Greening 105 (2025) 128693

18

Table A7 (continued )

Model Article Algorithm Resolution Model Validation and Prediction Accuracy

(Zhang and Hu, 
2017)

LEM 3km grid 10-fold CV; R2/MPE/RMSE

ML/DL LUR Models (Qi et al., 2022) RF 100m grid (within 500m 
of each monitor)

10-fold CV (splitting training and testing set randomly, temporally, or 
spatially); R²/MAE/RMSE

(Babu Saheer et al., 
2022)

LR; SVR; LSTM Within 1km of monitor MAE/MSE/RMSE/R²/MAPE

(Han et al., 2022a) RF, MLR 500m grid Splitting 80% training and 20% test; R²/MSE/RMSE/MAE

OK: Ordinary Kriging, IDW: Inverse Distance Weighted, KED: Kriging with external drift, KED-IDW: A Hybridization of KED and IDW, SMR: Stepwise Multiple 
Regression, BFSR: Backwards and Forwards Stepwise Regression, SLR: Stepwise Linear Regression, SFR: Supervised Forward Regression, LR: Linear Regression, MLR: 
Multiple Linear Regression, LEM: Linear Mixed-effects Model, XGBoost: eXtreme Gradient Boosting algorithms, RF: Random Forest, KNN: K-Nearest Neighbour, NB: 
Naive Bayes, SGD: The Stochastic Gradient Descent algorithm, SVR: Support Vector Regression, SVM: Support Vector Machine, LSTM: Long Short Term Memory, CV: 
Cross-Validation, LOOCV: Leave-one-out cross-validation.
Statistical Measures includes Recall (REC), Precision (PREC), Specificity, Kappa Index (KI), F-measure, Accuracy, Fitting Index (IA). ROC-AUC: The area under the ROC 
curve, Error Metrics includes mean average error (MAE), mean squared error (MSE), root mean squared error (RMSE), mean absolute percentage error (MAPE), 
R²score, mean percentage error (MPE), relative root mean squared error (RRMSE), relative mean absolute error (RMAE), normalized mean squared error (NMSE).
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